We know that the weight is given by:
[tex]F=mg[/tex]
since the weight on earth is 715 and g=10 we plug this values in the equation and solve for the mass:
[tex]\begin{gathered} 715=10m \\ m=\frac{715}{10} \\ m=71.5 \end{gathered}[/tex]
therefore the mass of the student is 71.5 kg.
We can fill the table with the values given:
F=315 N
G=6.67e(-11) m3/kgs2
m=71.5 kg
r=7.14e7 m
Now to find the mass of the second planet we use the gravitational law:
[tex]F=G\frac{mM}{r^2}[/tex]
Plugging the values and solving for M we have:
[tex]\begin{gathered} 315=(6.67\times10^{-11})\frac{(71.5)M}{(7.14\times10^7)^2} \\ M=\frac{(315)(7.14\times10^7)^2}{(71.5)(6.67\times10^{-11})} \\ M=3.37\times10^{26} \end{gathered}[/tex]
Therefore the mass of the second planet is 3.37e26 kg