Respuesta :

Consider the triangle ABC.

In triangle ABC, side AB is equal to AC means that angle B is equal to angle C.

Determine the value of angle in triangle ABC.

[tex]\begin{gathered} \angle A+\angle B+\angle C=180^{\circ} \\ x^{\circ}+50^{\circ}+50^{\circ}=180^{\circ} \\ x^{\circ}=80^{\circ} \end{gathered}[/tex]

Consider the triangle BCD.

In triangle BCD, side BD is equal to side CD, so angle B is equal to angle C.

Determine the angle of triangle BCD.

[tex]\begin{gathered} \angle B+\angle C+\angle D=180^{\circ} \\ y^{\circ}+y^{\circ}+120^{\circ}=180^{\circ} \\ y^{\circ}=\frac{60^{\circ}}{2} \\ =30^{\circ} \end{gathered}[/tex]

So correction answer is D part.