Respuesta :

Given the following parameters

[tex]n=14,\bar{x}=37,s=2[/tex]

The formula to find the margin of error, MOE, is

[tex]\text{MOE}=z\times\frac{s}{\sqrt[]{n}}[/tex]

Where

[tex]\begin{gathered} \text{MOE is the margin of error} \\ z\text{ is the z-score} \\ s\text{ is the standard deviation} \\ n\text{ is number of sample} \end{gathered}[/tex]

The z-score for 95% confidence interval is

[tex]z=1.960[/tex]

Substitute the parameters into the margin of error formula

[tex]\begin{gathered} \text{MOE}=z\times\frac{s}{\sqrt[]{n}} \\ \text{MOE}=1.960\times\frac{2}{\sqrt[]{14}} \\ \text{MOE}=1.960\times0.5345 \\ \text{MOE}=1.04762 \\ \text{MOE}=1.05\text{ (two decimal places)} \end{gathered}[/tex]

Hence, the margin of error, MOE, is 1.05 (two decimal places)