Respuesta :

Step 1

State the formula for the volume of a cone.

[tex]V=\frac{1}{3}\pi r^2h[/tex]

Where;

[tex]\begin{gathered} r=3\text{ f}t \\ h=5ft \end{gathered}[/tex]

Step 2

Find the volume of the cone in the figure.

[tex]\begin{gathered} V=\frac{1}{3}\times\pi\times3^2\times5 \\ V=\frac{\pi\times9\times5}{3} \\ V=15\pi ft^3 \end{gathered}[/tex]

Step 3

State the formula for the volume of a cylinder

[tex]V=\pi r^2h[/tex]

where;

[tex]\begin{gathered} r=3ft \\ h=6ft \end{gathered}[/tex]

Step 4

Find the volume of the cylinder.

[tex]\begin{gathered} V=\pi\times3^2\times6 \\ V=\pi\times9\times6 \\ V=54\pi ft^3 \end{gathered}[/tex]

The total volume of the figure is, therefore;

[tex]\begin{gathered} V=\text{volume of cone + volume of cylinder} \\ V=15\pi+54\pi \\ V=69\pi ft^3 \end{gathered}[/tex]

The total volume of the figure in terms of π=69π cubic feet

Answer;69π cubic feet