Respuesta :

Answer:

[tex](16x^2-16xy+4y^2)\text{ square units}[/tex]

Explanation:

Given any square with side length s:

[tex]\text{Area}=s^2[/tex]

If the side length, s=4x-2y

[tex]\text{A}=(4x-2y)^2^{}[/tex]

Next, we expand:

[tex]\begin{gathered} A=(4x-2y)(4x-2y) \\ =16x^2-8xy-8xy+4y^2 \\ A=(16x^2-16xy+4y^2)\text{ square units} \end{gathered}[/tex]

Its area is (16x²-16xy+4y²) square units.