From a given function, the domain of the function is the complete possible values of the independent variables. Given a function, the domain of the function could be gotten by finding the solution of the function
For example, a function f(x) as a domain of different values of x
If f(x)= 19-7x, the domain is the solution of the function
[tex]\begin{gathered} f(x)=19-7x \\ 19-7x=0 \\ 19=7x \\ 7x=19 \\ x=\frac{19}{7} \end{gathered}[/tex]Hence, the domain of a function f(x)= 19-7x is x=19/7
If f(x) of a function is given as
[tex]f(x)=6x^2+13x-15[/tex]The domain of the function would be the solution of the function
[tex]\begin{gathered} 6x^2+13x-15=0 \\ 6x^2+18x-5x-15_{}=0 \\ 6x(x+3)-5(x+3)=0 \\ (x+3)(6x-5)=0 \end{gathered}[/tex][tex]\begin{gathered} x+3=0 \\ x=-3 \\ or6x-5=0 \\ 6x=5 \\ x=\frac{5}{6} \end{gathered}[/tex]Hence, the domain of the question is x= -3 and x=5/6