Given the Kite ABCD.
We want to find the Area of the Kite.
Recall that the Area of a Kite can be expressed as;
[tex]A=\frac{pq}{2}[/tex]Where;
p and q are the diagonals of the Kite.
For the given Kite, the diagonals of the kite are;
AC and BD.
[tex]\begin{gathered} AC=5-(-2)=5+2 \\ AC=7\text{ units} \end{gathered}[/tex][tex]\begin{gathered} BD=5-1 \\ BD=4\text{ units} \end{gathered}[/tex]So,
p = AC = 7 units
q = BD = 4 units
Substituting into the formula, we have;
[tex]\begin{gathered} A=\frac{pq}{2}=\frac{7\times4}{2}=\frac{28}{2} \\ A=14\text{ sq units} \end{gathered}[/tex]Therefore, the area of the Kite is;
[tex]14\text{ square units}[/tex]