Respuesta :

Given the Kite ABCD.

We want to find the Area of the Kite.

Recall that the Area of a Kite can be expressed as;

[tex]A=\frac{pq}{2}[/tex]

Where;

p and q are the diagonals of the Kite.

For the given Kite, the diagonals of the kite are;

AC and BD.

[tex]\begin{gathered} AC=5-(-2)=5+2 \\ AC=7\text{ units} \end{gathered}[/tex][tex]\begin{gathered} BD=5-1 \\ BD=4\text{ units} \end{gathered}[/tex]

So,

p = AC = 7 units

q = BD = 4 units

Substituting into the formula, we have;

[tex]\begin{gathered} A=\frac{pq}{2}=\frac{7\times4}{2}=\frac{28}{2} \\ A=14\text{ sq units} \end{gathered}[/tex]

Therefore, the area of the Kite is;

[tex]14\text{ square units}[/tex]