4x3 − 6x2 − 28x Is this a special product? If yes, what type

SOLUTION:
Step 1:
In this question, we are given the following:
Step 2:
The details of the solution are as follows:
Back to the question, we have that:
[tex]\begin{gathered} 4x^3-6x^2\text{ -28x = 2 x \lparen2x}^2\text{ - 3x - 14 \rparen} \\ =\text{ 2 x \lparen2x}^2\text{ -7x + 4 x - 14 \rparen} \\ =\text{ 2x \lparen x \lparen 2x - 7\rparen + 2 \lparen 2x - 7 \rparen \rparen} \\ Factorizing,\text{ we have that:} \\ =\text{ 2x \lparen x+2 \rparen \lparen 2x-7\rparen } \\ Hence, \\ 4x^3-6x^2-28\text{ x = 2 x \lparen x+ 2\rparen \lparen 2x-7 \rparen } \\ Yes,\text{ it is a special product} \\ \text{The type of special product = Distributive Law} \end{gathered}[/tex]