Respuesta :

Solution

Given the following matrices:

[tex]\begin{gathered} A=\begin{bmatrix}{2} & {-5} \\ {1} & {0}\end{bmatrix} \\ \\ B=\begin{bmatrix}{-2} & {-5} \\ {1} & {0}\end{bmatrix} \end{gathered}[/tex]

Question 1:

[tex]\begin{gathered} 2A+3A \\ \\ 2\begin{bmatrix}{2} & {-5} \\ {1} & {0}\end{bmatrix}+3\begin{bmatrix}{2} & {-5} \\ {1} & {0}\end{bmatrix} \\ \\ =\begin{bmatrix}{2\times2} & {-5\times2} \\ {1\times2} & {0\times2}\end{bmatrix}+\begin{bmatrix}{2\times3} & {-5\times3} \\ {1\times3} & {0}\times3\end{bmatrix} \\ \\ =\begin{bmatrix}{4} & {-10} \\ {2} & {0}\end{bmatrix}+\begin{bmatrix}{6} & {-15} \\ {3} & {0}\end{bmatrix} \\ \\ =\begin{bmatrix}{4+6} & {-10-15} \\ {2+3} & {0+0}\end{bmatrix} \\ \\ \therefore2A+3A=\begin{bmatrix}{10} & {-25} \\ {5} & {0}\end{bmatrix} \end{gathered}[/tex]

Question 2:

[tex]undefined[/tex]