Choose the end behavior of the following function f(x) = 4^x-3 -2

Determine the value of the expression for x tends to infinity.
[tex]\begin{gathered} \lim _{x\to\infty}(4^{x-3}-2)=\lim _{x\to\infty}4^{x-3}-\lim _{x\to\infty}2 \\ =\infty-2 \\ =\infty \end{gathered}[/tex]Determine the value of expression for x tends to negative infinity.
[tex]\begin{gathered} \lim _{x\to-\infty}(4^{x-3}-2)=\lim _{x\to-\infty}4^{x-3}-\lim _{x\to-\infty}2 \\ =0-2 \\ =-2 \end{gathered}[/tex]So answer is,
[tex]\begin{gathered} \text{As x}\rightarrow-\infty,\text{ f(x)}\rightarrow-2 \\ \text{As x}\rightarrow\infty,\text{ f(x)}\rightarrow\infty \end{gathered}[/tex]Option B is correct