Respuesta :

Step 1. Define the length

We will call the length of the rectangle x:

[tex]\text{LENGTH}=x[/tex]

Step 2. Define the width

Since the width is 11 less than twice the length:

[tex]\text{WIDTH}=2x-11[/tex]

Step 3. Use the formula for the perimeter of a rectangle:

[tex]\text{PERIMETER}=2(WIDTH)+2(LENGTH)[/tex]

Substituting the value of the perimeter: 52.4, the width and length:

[tex]52.4=2(2x-11)+2(x)[/tex]

Using distributive property on the right side:

[tex]52.4=4x-22+2x[/tex]

And combining like terms in the right:

[tex]52.4=6x-22[/tex]

Adding 22 to both sides:

[tex]\begin{gathered} 52.4+22=6x-22+22 \\ 74.4=6x \end{gathered}[/tex]

Dividing both sides by 6:

[tex]\begin{gathered} \frac{74.4}{6}=\frac{6x}{6} \\ 12.4=x \end{gathered}[/tex]

Thus, the width and length are:

[tex]\begin{gathered} \text{LENGTH}=x=12.4ft \\ \text{WIDTH}=2x-11=2(12.4)-11=24.8-11=13.8ft \end{gathered}[/tex]