Find the PERIMETER AND the AREA of a right triangle whose sides are 3 inches, 4 inches, and 5 inches . ANS. _________. in , A= 2. _____________. i n squared

Let us sketch out the figure first,
Step 1 : Solve for the perimeter of the right angled triangle.
The perimeter of the triangle is the sum of all the sides of the triangle.
[tex]\begin{gathered} \text{Perimeter}=(3+4+5)\text{ inches} \\ =12\text{inches} \end{gathered}[/tex]Hence, the perimeter of the triangle is 12 inches.
Step 2: Solve for the area of the triangle.
Given,
[tex]\begin{gathered} \text{base}=3\text{inches} \\ \text{height}=4\text{inches} \end{gathered}[/tex]The formula for the area of a triangle is,
[tex]\begin{gathered} \text{Area of the triangle=}\frac{1}{2}\times base\times height \\ \text{Area}=\frac{1}{2}\times3\text{inches}\times4inches \\ \text{Area}=\frac{1}{2}\times12inches^2=6inches^2 \end{gathered}[/tex]Hence, the area of the triangle is 6 inches².