Use the information provided to write the equation of each circle.+Center: (-10, -13)Radius: 4A) (x + 10)+ (y + 13)- 16B) (x + 10)2 + (y + 13)2 = 256C) (x - 10)2 + (y – 13)2 = 16D) (x + 10)+(y - 13)2 - 16

Respuesta :

Given data:

The center of the circle is (a, b)= (-10, -13).

The given radius of the circle is r=4.

The standard equation of the circle is,

[tex](x-a)^2+(y-b)^2=r^2^{}[/tex]

Substitute the given values in the above expression is,

[tex]\begin{gathered} (x-(-10))^2+(y-(-13))^2=(4)^2 \\ (x+10)^2+(y+13)^2=16 \end{gathered}[/tex]

Thus, the equation of the circle is (x+10)^2 + (y+13)^2 =16.

Otras preguntas