Given:
Mean = μ = 22
Standard deviation = σ = 2.4
We will find the probability that x is between 19.7 and 25.3
We will find the z-score for the given values of x
[tex]\begin{gathered} x=19.7\rightarrow z=\frac{x-\mu}{\sigma}=\frac{19.7-22}{2.4}=-0.95833 \\ \\ x=25.3\rightarrow z=\frac{x-\mu}{\sigma}=\frac{25.3-22}{2.4}=1.375 \end{gathered}[/tex]So,
[tex]P(19.7So, From the z-table, the probability =[tex]0.33105+0.41543=0.74648[/tex]so, the answer will be 0.74648