Respuesta :

Given the word "HAPPINESS";

There are nine letters in HAPPINESS but with two letters reocurrring more than once.

The number of distinct rearrangement of the letters is;

[tex]\frac{9!}{2!2!}[/tex]

Thus, we simplify further. We have;

[tex]\begin{gathered} \frac{9!}{2!2!}=\frac{9\times8\times7\times6\times5\times4\times3\times2!}{2\times1\times2!} \\ \frac{9!}{2!2!}=90,720 \\ \end{gathered}[/tex]

FINAL ANSWER: 90,720