SOLUTION
Let us start with the sketch of the figure
Using the trigonometric functions to obtain the measure of the angle.
From the image above,
[tex]\begin{gathered} \text{Hypotenuse}=50ft \\ \text{Opposite}=40ft \\ \theta=\text{?} \end{gathered}[/tex]Thus, the trigonometric function that correlates both the opposite and the hypotenuse together is the Sine of angles.
[tex]\sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]Solving for θ
[tex]\begin{gathered} \sin \theta=\frac{40}{50}=\frac{4}{5}=0.8 \\ \sin \theta=0.8 \\ \therefore\theta=\sin ^{-1}0.8=53.1301\approx53.13^0(nearest\text{ 2 decimal places)} \\ \therefore\theta=53.13^0 \end{gathered}[/tex]Hence, the measure of the angle the string forms with the ground is
[tex]53.13^0[/tex]