Respuesta :

Answer:

[tex]y=x^2-23x\text{ +196}[/tex]

Explanation:

To find the greatest value, we plug in the value x =16 into the given functions.

For y=5x

[tex]\begin{gathered} y\text{ = 5(16)} \\ \text{Calculate} \\ y=\text{ 80} \end{gathered}[/tex]

For

[tex]\begin{gathered} y=x^2-23x\text{ +196} \\ =(16)^2\text{ - 23(16)+196} \\ \text{Calculate} \\ =84 \end{gathered}[/tex]

For

[tex]\begin{gathered} y=1.15^x \\ y=1.15^{16} \\ Calculate \\ y=9.36 \end{gathered}[/tex]

Therefore, the function that has the greatest value is

[tex]y=x^2-23x\text{ +196}[/tex]