Respuesta :

Let the numbers are x and y

The product of the numbers = 294

So,

[tex]x\cdot y=294\rightarrow(1)[/tex]

The quotient of the numbers = 6

So,

[tex]\begin{gathered} \frac{x}{y}=6 \\ x=6y \end{gathered}[/tex]

Substitute with x = 6y into the first equation:

So,

[tex](6y)\cdot y=294[/tex]

Solve for y:

[tex]\begin{gathered} 6y^2=294 \\ y^2=\frac{294}{6}=49 \\ \\ y=\sqrt[]{49}=\pm7 \end{gathered}[/tex]

Now, substitute with y to find x

[tex]\begin{gathered} y=7\rightarrow x=6y=6\cdot7=42 \\ \\ y=-7\rightarrow x=6y=6\cdot-7=-42 \end{gathered}[/tex]

So, the answer will be:

The numbers are { 42 and 7 } or { -42, -7 }