Given:
The number of letters in the account number is, n(A) = 3.
The number of digits in the account number is, n(D) = 5.
The objective is to find the number of possible account numbers with repetitions.
Explanation:
The total number of letters is, N(A)=26.
The total number of digits is, N(D)=13.
The formula to find the number of possible numbers are,
[tex]P=N(A)^{n(A)}\times N(D)^{n(D)}\text{ . . . . .(1)}[/tex]To find the number of possibilities:
Substitute the obtained values in equation (1).
[tex]\begin{gathered} P=26^3\times10^5 \\ =26\times26\times26\times10\times10\times10\times10\times10 \\ =1,757,600,000\text{ ways} \end{gathered}[/tex]Hence, there are 1,757,600,000 ways