Respuesta :

y=3x-6

Explanation

the equation of a lines is given bne

where m is the slope and b is the y-intercept

so

Step 1

the slope of a line si given by:

[tex]\begin{gathered} \text{slope}=\frac{change\text{ in y}}{\text{change in x}}=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{where P1(x}_1,y_1) \\ \text{and P2(x}_2,y_2) \\ \text{are 2 known points from the line} \end{gathered}[/tex]

we are given the intercepts ( also points of the line)

so

P1=(2,0)

P2=(0,-6)

replace

[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{-6-0}{0-2}=\frac{-6}{-2}=3 \end{gathered}[/tex]

so,the slope of the line is 3

Step 2

now, we have the slope and the given y-intercept, we can replace in the equation of the line

[tex]\begin{gathered} y=mx+b \\ \text{slope}=m=3 \\ b=y-\text{intercept}=-6 \\ \text{replacing} \\ y=3x-6 \end{gathered}[/tex]

so, the answer is

y=3x-6

I hope this helps you