Respuesta :

EXPLANATION:

To get the solution of the simultaneous equation, using the elimination method:

We will have the following steps:

Step 1:

Write the two equations:

[tex]\begin{gathered} y=-\frac{1}{2}x+3 \\ y=-\frac{7}{2}x-3 \end{gathered}[/tex]

Step2: Subtract the two equations:

[tex]\begin{gathered} y-y=-\frac{1}{2}x-(-\frac{7}{2}x)+3-(-3) \\ 0=-\frac{1}{2}x+\frac{7}{2}x+6 \\ \end{gathered}[/tex]

Step 3: Simplify the expression

[tex]\begin{gathered} 0=3x+6 \\ 3x=-6 \\ x=-\frac{6}{3} \\ x=-2 \end{gathered}[/tex]

Step 4: Substitute x=-2 into the formula:

[tex]\begin{gathered} y=-\frac{1}{2}x+3 \\ y=-\frac{1}{2}\times-2+3 \\ y=1+3 \\ y=4 \end{gathered}[/tex]

Therefore, the answer is

[tex](-2,4)[/tex]

Thus,

Option B is correct