Respuesta :

Given the following System of equations:

[tex]\begin{cases}7x+14y=-21 \\ 8x+2y=4\end{cases}[/tex]

You can solve it using the Elimination method, as following:

1. You can multiply the second equation by -7.

2. Add the equations and solve for "x".

Then:

[tex]\begin{gathered} \begin{cases}7x+14y=-21 \\ -56x-14y=-28\end{cases} \\ ------------ \\ -49x=-49 \\ \\ x=\frac{-49}{-49} \\ \\ x=1 \end{gathered}[/tex]

3. Knowing the value of the variable "x", you can substitute it into any original equation and solve for the variable "y" in order to find its value. This is:

[tex]\begin{gathered} 8x+2y=4 \\ 8(1)+2y=4 \\ 2y=4-8 \\ 2y=-4 \\ \\ y=\frac{-4}{2} \\ \\ y=-2 \end{gathered}[/tex]

Then, the solution is:

[tex](1,-2)[/tex]