Respuesta :

SOLUTION

The vertex form of a quadratic equation is:

[tex]y=a(x-h)^2+k[/tex]

The given vertex is (1,2)

It follows h = 1, k = 2

Substitute the values into the vertex equation

[tex]y=a(x-1)+2[/tex]

Since the line passes through (3,10) substitute x=3 and y=10 into the equation

This gives

[tex]10=a(3-1)^2+2[/tex]

Solve for a

[tex]\begin{gathered} 10=a(2)^2+2 \\ 10=4a+2 \\ 8=4a \\ a=2 \end{gathered}[/tex]

Substitute the value of a into the vertex form equation

[tex]y=2(x-1)^2+2[/tex]

The required equation is:

[tex]y=2(x-1)^{2}+2[/tex]