given the two similar octagons shown below, find the perimeter of the larger octagon

Answer:
238 units
Explanation:
If two shapes are similar, then the ratio of the corresponding sides must be equal.
• In the smaller octagon, side length = 4
,• The corresponding side length in the larger octagon = 28
[tex]\text{Ratio}=\frac{28}{4}=7[/tex]Therefore, the perimeter of the larger octagon:
[tex]\begin{gathered} Perimeter=\text{Perimeter of the smaller octagon }\times Scale\text{ Factor} \\ =34\times7 \\ =238\text{ units} \end{gathered}[/tex]