Determine the average rate of change of the following function between the given values of the variable: f(x) = x^4 + x; x= -2, x = 1Average rate of change:

Respuesta :

Answer:

The average rate of change is:

16/3

Explanation:

Given the function:

[tex]f(x)=x^4+x[/tex]

and the interval:

The average rate of change is:

[tex]\begin{gathered} \frac{f(b)-f(a)_{}}{b-a} \\ \\ =\frac{\lbrack(1)^4+(1)\rbrack-\lbrack(-2)^4+(-2)\rbrack}{1-(-2)} \\ \\ =\frac{(1+1)-(16-2)_{}}{1+2} \\ \\ =\frac{2-(-14)}{3} \\ \\ =\frac{16}{3} \end{gathered}[/tex]