Two parallel long, straight wires are 0.0040 m apart and carry currents of 5.0 A and 10 A, respectively. Determine the net magnetic field midway between the wires. Take B as positive if it is going into the page.Group of answer choices-1.0 x 10-3 T5.0 x 10-4 T-5.0 x 10-4 T1.0 x 10-3 T

Two parallel long straight wires are 00040 m apart and carry currents of 50 A and 10 A respectively Determine the net magnetic field midway between the wires Ta class=

Respuesta :

Given

Current in the wires,

[tex]\begin{gathered} I_1=5.0\text{ A} \\ I_2=10\text{ A} \end{gathered}[/tex]

The distance between the wires,

[tex]d=0.0040\text{ m}[/tex]

To find:

The magnetic field between the wires.

Explanation:

Let O be the mid point between the wires.

The magnetic field due to the wire carrying the current

[tex]I_1=5\text{ A}[/tex][tex]\begin{gathered} B_1=\frac{\mu_oI_1}{2\pi(\frac{d}{2})} \\ \Rightarrow B_1=\frac{4\pi\times10^{-7}\times5}{2\pi(\frac{0.0040}{2})} \\ \Rightarrow B_1=2\times10^{-7}\frac{5}{0.002} \\ \Rightarrow B_1=0.0005\text{ T} \end{gathered}[/tex]

The magnetic field goes into the plane of the paper.

Again,

The magnetic field due to the wire carrying the current

[tex]I_2=10\text{ A}[/tex][tex]\begin{gathered} B_2=\frac{\mu_oI_2}{2\pi(\frac{d}{2})} \\ \Rightarrow B_2=\frac{4\pi\times10^{-7}\times10}{2\pi\times0.002} \\ \Rightarrow B_2=0.001\text{ T} \end{gathered}[/tex]

The magnetic fields goes out of the plane of the paper.

Thus the resultant magnetic field is:

[tex]\begin{gathered} B=B_1-B_2 \\ \Rightarrow B=0.0005-0.001 \\ \Rightarrow B=0.0005\text{ T} \\ \Rightarrow B=-5\times10^{-4}T \end{gathered}[/tex]

Conclusion

Thus the required answer is:

[tex]-5\times10^{-4}T[/tex]