Respuesta :

EXPLANATION

Given the system of equations:

(1) 3x + 5y = -17

(2) 2x + 4y = 6

Multiplying (1) by 2 and (2) by 3:

(1) 6x + 10y = -34

(2) 6x + 12y = 18

Subtracting (2) to (1):

(2) 6x + 12y = 18

-

(1) 6x + 10y = -34

-------------------------------------

2y = 52

Dividing both sides by 2:

y = 52/2

Simplifying:

y = 26

[tex]\mathrm{For\: }6x+10y=-34\mathrm{\: plug\: in\: }y=26[/tex][tex]6x+10\cdot\: 26=-34[/tex][tex]\mathrm{Multiply\: the\: numbers\colon}\: 10\cdot\: 26=260[/tex][tex]6x+260=-34[/tex][tex]\mathrm{Subtract\: }260\mathrm{\: from\: both\: sides}[/tex][tex]6x+260-260=-34-260[/tex]

Simplify:

[tex]6x=-294[/tex]

Divide both sides by 6:

[tex]\frac{6x}{6}=\frac{-294}{6}[/tex]

Simplify:

[tex]x=-49[/tex]

The solutions to the system of equations are:

[tex]x=-49,\: y=26[/tex]