EXPLANATION
Given the system of equations:
(1) 3x + 5y = -17
(2) 2x + 4y = 6
Multiplying (1) by 2 and (2) by 3:
(1) 6x + 10y = -34
(2) 6x + 12y = 18
Subtracting (2) to (1):
(2) 6x + 12y = 18
-
(1) 6x + 10y = -34
-------------------------------------
2y = 52
Dividing both sides by 2:
y = 52/2
Simplifying:
y = 26
[tex]\mathrm{For\: }6x+10y=-34\mathrm{\: plug\: in\: }y=26[/tex][tex]6x+10\cdot\: 26=-34[/tex][tex]\mathrm{Multiply\: the\: numbers\colon}\: 10\cdot\: 26=260[/tex][tex]6x+260=-34[/tex][tex]\mathrm{Subtract\: }260\mathrm{\: from\: both\: sides}[/tex][tex]6x+260-260=-34-260[/tex]Simplify:
[tex]6x=-294[/tex]Divide both sides by 6:
[tex]\frac{6x}{6}=\frac{-294}{6}[/tex]Simplify:
[tex]x=-49[/tex]The solutions to the system of equations are:
[tex]x=-49,\: y=26[/tex]