606.81mL
To get the final volume of the gas sample, we will use Charles law. According to the law, the volume of a given amount of gas is directly proportional to its temperature. Mathematically;
[tex]\begin{gathered} V\alpha T \\ V=kT \\ k=\frac{V}{T} \\ \frac{V_1}{T_1}=\frac{V_2}{T_2}_{} \end{gathered}[/tex]V1 and V2 are the initial and final volume
T1 and T2 are the initial and final temperatures.
Given the following parameters:
[tex]\begin{gathered} V_1=325mL \\ T_1=434.9K \\ T_2=812K \\ V_2_{}=\text{?} \end{gathered}[/tex]Substitute the given parameters into the formula to have:
[tex]\begin{gathered} V_2=\frac{V_1T_2}{T_1} \\ V_2=\frac{325mL\times812\cancel{K}}{434.9\cancel{K}} \\ V_2=\frac{263,900}{434.9} \\ V_2=606.81mL \end{gathered}[/tex]Hence the volume of the sample of gas if the temperature is increased to 812 K is 606.81mL