Respuesta :

Answer:

-2

Explanation:

Given the function:

[tex]h(x)=-x^2-9x+26[/tex]

The rate of change over the interval -6≤x≤-1 is:

[tex]\frac{h(-6)-h(-1)}{-6-(-1)}[/tex]

Evaluating this gives:

[tex]\begin{gathered} \frac{(-(-6)^2-9(-6)+26)-(-(-1)^2-9(-1)+26)}{-6+1} \\ =\frac{(-36+54+26)-(-1+9+26)}{-5} \\ =\frac{44-34}{-5} \\ =\frac{10}{-5} \\ =-2 \end{gathered}[/tex]

The average rate of change of the function over the given interval is -2.