Respuesta :

The Solution:

Given:

[tex]y=4x+5[/tex]

Required:

Find the equation of the line that passes the point (8,-4) and it is perpendicular to y = 4x + 5.

Step 1:

Find the slope of y = 4x+5.

Comparing the line y = 4x +5 and y = mx + c.

The slope of the line is:

[tex]slope=m=4[/tex]

Thus, for a line that is perpendicular to y = 4x + 5, the slope is:

[tex]slope=m_2=\frac{-1}{m}=\frac{-1}{4}[/tex]

Step 2:

Find the required equation of the perpendicular line.

[tex]\begin{gathered} y-y_1=m_2(x-x_1) \\ \\ x_1=8 \\ y_1=-4 \end{gathered}[/tex]

Substitute:

[tex]\begin{gathered} y--4=\frac{-1}{4}(x-8) \\ \\ y+4=\frac{-1}{4}(x-8) \\ \\ y=-\frac{1}{4}x+2-4 \\ \\ y=-\frac{1}{4}x-2 \end{gathered}[/tex]

Answer:

[tex]y=-\frac{1}{4}x-2[/tex]