The area of a trapezoid is 180 cm². The height is 18 cm and the length of one of the parallel sides is 5 cm. Find the length ofthe second parallel side. Express your answer as a simplified fraction or a decimal rounded to two places.

Respuesta :

The area of a trapezoid is given by:

[tex]A=\frac{1}{2}\cdot h\cdot(a+b).[/tex]

Where:

• h is the heigh,

,

• a and b are the length of the parallel sides.

In this problem, we have:

• A = 180 cm²,

,

• h = 18 cm,

• a = 5 cm,

,

• b = x.

Replacing these data in the equation above, we have:

[tex]180cm^2=\frac{1}{2}\cdot18\operatorname{cm}\cdot(5\operatorname{cm}+x)\text{.}[/tex]

Solving for x the last equation, we get:

[tex]\begin{gathered} \frac{2\cdot180cm^2}{18\operatorname{cm}}=5\operatorname{cm}+x, \\ 20\operatorname{cm}=5\operatorname{cm}+x, \\ x=20\operatorname{cm}-5\operatorname{cm}, \\ x=15\operatorname{cm}\text{.} \end{gathered}[/tex]

So the length of the second parallel side is:

[tex]x=15\operatorname{cm}\text{.}[/tex]

Answer: 15 cm