Respuesta :

To complete the square means that by adding or subtracting a constant to the equation, we have to take the left side of the equation to the form:

[tex](x-k)^2=x^2-kx+k^2\text{.}[/tex]

Now, notice that:

[tex]18x=2(9)x\text{.}[/tex]

Adding 81=9² to the equation we get:

[tex]x^2-18x+81=65+81.[/tex]

Therefore, we can rewrite the given equation as:

[tex](x-9)^2=146.[/tex]

Then:

[tex]x-9=\pm\sqrt[]{146}.[/tex]

Finally, we get that:

[tex]x=9\pm\sqrt[]{146}.[/tex]

Answer:

[tex]\begin{gathered} x_1=21.1, \\ x_2=-3.1. \end{gathered}[/tex]