Respuesta :

Soluion:

Given the figure below:

OAB is congruent to OCD.

Thus, to evaluate the area of the shaded rortion, we have

[tex]2(area\text{ of the sector - area of the triangle OAB\rparen}[/tex]

Step 1: Evluate the area of tehe sector OAB.

The area of the sector of a sector is expressed as

[tex]\begin{gathered} Area_{sector}=\frac{\theta}{360}\times\pi r^2 \\ where \\ \theta\Rightarrow central\text{ angle} \\ r\Rightarrow radius\text{ of the circle} \end{gathered}[/tex]

Thus,

[tex]\begin{gathered} central\text{ angle AOB= 180-90} \\ =90 \\ radius,\text{ r=6 ft.} \\ thus, \\ Area_{sector}=\frac{90}{360}\times\pi\times6\text{ ft}\times6\text{ ft} \\ =9\pi\text{ square feet} \end{gathered}[/tex]

Step 2: Evaluate the area of the triangle OAB.

The area of the triangle OAB is expressed as

[tex]\begin{gathered} Area_{triangle}=\frac{1}{2}ab\sin C \\ where \\ a\Rightarrow OA \\ b\Rightarrow OB \\ C\Rightarrow\angle O \\ OA=OB=6\text{ ft} \\ thus, \\ Area_{triangle}=\frac{1}{2}\times6ft\times6ft\times\sin90 \\ =18\text{ square feet} \end{gathered}[/tex]

Step 3: Evaluate the area of the shaded portion.

Recall that OAB is congruent to OCD,

[tex]OAB\cong OCD[/tex]

Thus, we have the area of the shaded portion to be evaluated as

[tex]\begin{gathered} 2(area\text{ of the sector - area of the tr}\imaginaryI\text{angle OAB}\operatorname{\rparen} \\ =2(9\pi-18) \\ =18(\pi-2)\text{ square feet} \end{gathered}[/tex]

Hence, the area of the shaded region is

[tex]18(\pi-2)\text{ square feet}[/tex]

Ver imagen DerryckL702976
Ver imagen DerryckL702976
Ver imagen DerryckL702976
Ver imagen DerryckL702976
Ver imagen DerryckL702976