Equation- a(-16x+10)=b+32x. What is the value of A and B

We are given the following equation
[tex]a(-16x+10)=b+32x_{}[/tex]We are asked to find the values of constants a and b.
Let us first expand the left side of the equation
[tex]\begin{gathered} a(-16x+10)=b+32x_{} \\ a\cdot(-16x)+a\cdot(10)=b+32x \\ -16ax+10a=b+32x \end{gathered}[/tex]Now let us equate the like terms together.
[tex]\begin{gathered} -16ax=32x \\ a=\frac{32x}{-16x} \\ a=-2 \end{gathered}[/tex]Similarly,
[tex]10a=b[/tex]Substitute the value of a
[tex]\begin{gathered} 10(-2)=b \\ -20=b \\ b=-20 \end{gathered}[/tex]Therefore, the value of a is -2 and the value of b is -20.