Given:
[tex]3|x+4|+7>13[/tex]
To solve the given inequality, we subtract 7 from both sides first:
[tex]\begin{gathered} 3|x+4|+7>13 \\ 3|x+4|+7-7>13-3 \end{gathered}[/tex]
Simplify
[tex]\begin{gathered} 3|x+4|>6 \\ \frac{3|x+4|}{3}>\frac{6}{3} \\ |x+4|>2 \end{gathered}[/tex]
Next, we apply the absolute rule:
If |u| >a, a>0 then u<-a or u>a
So our equations would be:
x+4<-2
or
x+4>2
For x+4<-2:
[tex]\begin{gathered} x+4<-2 \\ \text{Simplify and rearrange} \\ x<-2-4 \\ x<-6 \end{gathered}[/tex]
For x+4>2:
[tex]\begin{gathered} x+4>2 \\ x>2-4 \\ x>-2 \end{gathered}[/tex]
Hence,
x<-6 or x>-2
Therefore, the interval notation is:
[tex](-\infty,-6)\cup(-2,\infty)[/tex]
The graph of the solution set is: