Explanation:
[tex]\begin{gathered} Radius\text{ == 24 ft } \\ \text{Volume of Hemisphere = }\frac{2}{3}\cdot\text{ }\pi\cdot r^3 \\ \pi\text{ = 3.14} \\ \text{Volume = }\frac{2}{3}\cdot\text{ 3.14 }\cdot24^3 \\ \text{Volume = }\frac{2\cdot\text{ 3.14 }\cdot24^3}{3} \\ \text{Volume = }\frac{6.28\text{ x }13824}{3} \\ \text{Volume = }\frac{86814.72}{3} \\ \text{Volume = }28938.24ft^3 \end{gathered}[/tex][tex]\begin{gathered} \text{The surface area of Hemisphere = 3}\cdot\pi\cdot r^2 \\ \text{The surface area = 3 }\cdot3.14^{}\cdot24^2 \\ \text{Surface area = 3 }\cdot\text{ 3.14 }\cdot\text{ }576 \\ \text{Surface area = }5425.92ft^2 \end{gathered}[/tex][tex]\begin{gathered} \text{Lateral area = 2 }\cdot\text{ }\pi\cdot r^2 \\ \text{Lateral area = 2 }\cdot\text{ 3.14 }\cdot24^2 \\ \text{Lateral area = 2 x 3.14 x 576} \\ \text{Lateral area = 3617.28 ft}^2 \end{gathered}[/tex]