We have the expression above
we will use two of the laws of exponents in order to simplify the expression
[tex]x^m\cdot x^n=x^{m+n}[/tex][tex](x^m)^n=x^{m\cdot n}[/tex]using these two laws we will have
[tex]\begin{gathered} \lbrack(2x)^x(2x)^{2x}\rbrack^{\frac{1}{x}}=\lbrack(2x)^{x+2x}\rbrack^{\frac{1}{x}}=\lbrack(2x)^{3x}\rbrack^{\frac{1}{x}}=(2x)^{3x\cdot\frac{1}{x}}=(2x)^3=2^3x^3 \\ =8x^3 \end{gathered}[/tex]the simplification is
[tex]\lbrack(2x)^x(2x)^{2x}\rbrack^{\frac{1}{x}}=8x^3[/tex]