The midpoint of AB can be gotten by the formula
[tex](\frac{x_1+x_2}{2},\text{ }\frac{y_1+y_2}{2})[/tex][tex]\begin{gathered} \text{For ( -4, 4) and (6, -5)} \\ =(\frac{-4+6}{2},\text{ }\frac{4+(-5)}{2}) \end{gathered}[/tex][tex](\frac{2}{2},\text{ }\frac{-1}{2})[/tex][tex](1,\text{ -}\frac{1}{2})[/tex][tex]\begin{gathered} d=\sqrt[]{(x2-x1)^2+(y2-y1)^2\text{ }}\text{ = }\sqrt[]{(6-(-4))^2+(-5-4)^2} \\ =\sqrt[]{(6+4)^2+(-9)^2} \\ =\sqrt[]{100+81}\text{ =}\sqrt[]{181} \\ =13.453 \\ \approx13.5\text{ (nearest tenth)} \end{gathered}[/tex]