Respuesta :

An equation in the form:

[tex](x-a)^2+(y-b)^2=r^2[/tex]

is the standard form for the equation of a circle with center (a,b) and radius r. Here we have:

[tex]x^2+y^2-6x+4y+9=0[/tex]

Then, group the x and y terms separately and "move" the constant to the right side of the equation:

[tex]x^2-6x+y^2+4y=-9[/tex]

Complete the square:

[tex]x^2-6x+9+y^2+4y+4=-9+9+4[/tex]

Factor:

[tex](x-3)^2+(y+2)^2=4[/tex]

Express the right side as a square:

[tex](x-3)^2+(y-(-2))^2=2^2[/tex]

Therefore:

The center is: (3, - 2), the radius is 2

Answer:

[tex]\begin{gathered} \text{Center: (3,-2)} \\ \text{Radius: 2} \end{gathered}[/tex]