Complete each table converting the given measure to its equivalent measure in degrees or radians.

We are asked to complete each table converting the given measure to its equivalent measure in degrees or radians
Degrees to Radians:
We use the following relation to convert from degrees to radians
[tex]\text{radian}=\frac{2\pi}{360\degree}\times\text{degree}[/tex]Radians to Degrees:
We use the following relation to convert from radians to degrees
[tex]\text{degree}=\frac{360\degree}{2\pi}\times\text{radian}[/tex]Now let us perform the conversions
Table 1:
[tex]\begin{gathered} \text{radian}=\frac{2\pi}{360\degree}\times\text{degree} \\ \text{radian}=\frac{2\pi}{360\degree}\times0\degree \\ \text{radian}=0 \end{gathered}[/tex][tex]\begin{gathered} \text{radian}=\frac{2\pi}{360\degree}\times\text{degree} \\ \text{radian}=\frac{2\pi}{360\degree}\times30\degree \\ \text{radian}=\frac{\pi}{6} \end{gathered}[/tex][tex]\begin{gathered} \text{degree}=\frac{360\degree}{2\pi}\times\text{radian} \\ \text{degree}=\frac{360\degree}{2\pi}\times\frac{\pi}{4} \\ \text{degree}=45\degree \end{gathered}[/tex][tex]\begin{gathered} \text{degree}=\frac{360\degree}{2\pi}\times\text{radian} \\ \text{degree}=\frac{360\degree}{2\pi}\times\frac{\pi}{2} \\ \text{degree}=90\degree \end{gathered}[/tex]Table 2:
[tex]\begin{gathered} \text{degree}=\frac{360\degree}{2\pi}\times\text{radian} \\ \text{degree}=\frac{360\degree}{2\pi}\times\frac{2\pi}{3} \\ \text{degree}=120\degree \end{gathered}[/tex][tex]\begin{gathered} \text{degree}=\frac{360\degree}{2\pi}\times\text{radian} \\ \text{degree}=\frac{360\degree}{2\pi}\times\pi \\ \text{degree}=180\degree \end{gathered}[/tex][tex]\begin{gathered} \text{radian}=\frac{2\pi}{360\degree}\times\text{degree} \\ \text{radian}=\frac{2\pi}{360\degree}\times270\degree \\ \text{radian}=\frac{3\pi}{2} \end{gathered}[/tex]Therefore, both the tables have been completed with degrees and radians values.