Respuesta :

Given that 15 sports costs $295 and 25 jerseys cost $425

To find the linear equation that gives the cost C in dollars for j jerseys

The fomula to find the linear equation is

[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

Where y is the cost C and x is j jerseys

The coordinates are

[tex]\begin{gathered} (x_1,y_1)\Rightarrow(15,295) \\ (x_2,y_2)\Rightarrow(25,425)_{} \end{gathered}[/tex]

Substitute the values into the formula above

[tex]y-295=\frac{425-295}{25-15}(x-15)[/tex]

Solve to make y the subject,

[tex]\begin{gathered} y-295=\frac{425-295}{25-15}(x-15) \\ y-295=\frac{130}{10}(x-15) \\ y-295=13(x-15) \\ y-295=13x-195 \\ Make\text{ y the subject} \\ y=13x-195+295 \\ y=13x+100 \end{gathered}[/tex]

Recall that, y = C and x = j, Substitute for y and x into the equation above

[tex]C=13j+100[/tex]

Hence, the linear equation that gives the cost C in dollars for j jerseys is

[tex]C=13j+100[/tex]