Respuesta :

[tex]3.6\text{ }\times10^2[/tex]

Explanation:[tex](3\text{ }\times10^{-2})\text{ }\times\text{ (12 }\times10^3)[/tex]

Expanding and simplifying the expression:

[tex]\begin{gathered} 3\text{ }\times10^{-2}\text{ }\times\text{ 12 }\times10^3\text{ } \\ =\text{ 3 }\times12\text{ }\times10^{-2}\text{ }\times10^3 \\ =\text{ 36 }\times10^{-2}\text{ }\times10^3 \end{gathered}[/tex][tex]\begin{gathered} \text{When base of two terms are the same, the exponents will be brought together} \\ \text{The sign betw}een\text{ them is multiplication. The exponents will be added} \\ =\text{ 36 }\times10^{-2+3} \\ =\text{ 36 }\times10^1\text{ = 36 }\times10 \\ =\text{ 360} \end{gathered}[/tex][tex]\begin{gathered} \text{The result in decimal form:} \\ we\text{ will write in sci}entific\text{ notation} \\ 360\text{ = 3.60 }\times10^2 \\ \\ =\text{ 3.6 }\times10^2 \end{gathered}[/tex]