Respuesta :

EXPLANATION

Let's call x to the square:

The first equation is:

[tex]\frac{4}{5}\cdot x=28[/tex]

We need to isolate x, how can we do it?

Multiplying both sides by 5/4:

[tex]\frac{4}{5}\cdot\frac{5}{4}\cdot x=28\cdot\frac{5}{4}[/tex]

Multiplying the numerators:

[tex]x=\frac{140}{4}[/tex]

Simplifying the fraction:

[tex]x=35[/tex]

The solution is 35

In the second equation:

[tex]\frac{3}{10}\cdot x=\frac{57}{10}[/tex]

Multiplying both sides by 10/3:

[tex]x=\frac{10}{3}\cdot\frac{57}{10}=[/tex]

Multiplying terms:

[tex]x=\frac{570}{30}[/tex]

Simplifying:

[tex]x=19[/tex]

The solution is 19

In the third equation:

[tex]\frac{5}{9}\cdot x=15[/tex]

Multiplying both sides by 9/5:

[tex]x=\frac{9}{5}\cdot15[/tex]

Multiplying numerators and denominators:

[tex]x=\frac{135}{5}[/tex]

Simplifying:

[tex]x=27[/tex]

In the fourth equation:

[tex]\frac{3}{16}\cdot x=\frac{63}{16}[/tex]

Multiplying both sides by 16/3:

[tex]x=\frac{63}{16}\cdot\frac{16}{3}[/tex]

Multiplying terms:

[tex]x=\frac{1008}{48}[/tex]

Simplifying:

[tex]x=21[/tex]

The solution is 21