Respuesta :

Answer:

[tex]-2a^{11}b^9[/tex]

Explanation:

Given the expression:

[tex]\frac{-10a^2b^4}{5a^{-9}b^{-5}}[/tex]

First, rewrite the fraction by separating the constants, and variables a and b.

[tex]\begin{gathered} \frac{-10a^2b^4}{5a^{-9}b^{-5}}=-\frac{10}{5}\times\frac{a^2}{a^{-9}}\times\frac{b^4}{b^{-5}} \\ =-2\times\frac{a^2}{a^{-9}}\times\frac{b^4}{b^{-5}} \end{gathered}[/tex]

Next, apply the division rule of exponents:

[tex]\frac{x^m}{x^n}=x^{m-n}[/tex]

So, we have:

[tex]\begin{gathered} =-2\times a^{2-(-9)}\times b^{4-(-5)} \\ =-2\times a^{2+9}\times b^{4+5} \\ =-2a^{11}b^9 \end{gathered}[/tex]

The simplified form of the expression without any negative exponent is:

[tex]-2a^{11}b^9[/tex]