Respuesta :

Given:

[tex]\begin{gathered} HypothesisMean,H_0\colon\mu=23.915 \\ Sample\text{ mean, }\bar{\text{x}}=25.8 \\ \text{Standard deviation, }\sigma=4.57 \\ Sample\text{ size, n=43} \end{gathered}[/tex]

To find the test statistics, t:

The formula for the test statistics is,

[tex]t=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt[]{n}}}[/tex]

On substitution we get,

[tex]\begin{gathered} t=\frac{25.8-23.915}{\frac{4.57}{\sqrt[]{43}}} \\ =\frac{1.885}{0.69692} \\ =2.70476 \\ \approx2.705 \end{gathered}[/tex]

Hence, the answer is, t = 2.705 (rounded to 3 decimal places).