Respuesta :

Solution

For this case we can do the following:

[tex]8^2=x^2+y^2[/tex]

And we can create the following two questions:

[tex]2^2+z^2=x^2,6^2+z^2=y^2[/tex]

If we subtract the last two equations we got:

[tex]6^2-2^2=y^2-x^2[/tex]

Solving for y^2 we got:

[tex]y^2=36-4+x^2=32+x^2[/tex]

Replacing we got in the first equation:

[tex]8^2=x^2+32+x^2[/tex]

And solving for x we got:

[tex]64-32=2x^2[/tex][tex]32=2x^2[/tex][tex]16=x^2[/tex][tex]x=\sqrt[]{16}=4[/tex]