Use the quadratic formula to solve the equation below. –19x = -4x2 + 30 OA. x = -6, x = -1.25 OB. x = -6, x = -1.25 OC. x = 3, x = –2.5 OD. x = 6, x = 1.25ill send a picture of the question

Respuesta :

In order to solve this quadratic equation, first let's put it in the standard form:

[tex]\begin{gathered} y=ax^2+bx+c \\ \\ -19x=-4x^2+30 \\ 4x^2-19x-30=0 \\ \\ a=4,b=-19,c=-30 \end{gathered}[/tex]

Then, let's use the quadratic formula to find the zeros:

[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x_1=\frac{19+\sqrt[]{19^2+480}}{8}=\frac{19+29}{8}=\frac{48}{8}=6 \\ x_2=\frac{19-29}{8}=\frac{-10}{8}=-1.25 \end{gathered}[/tex]

So the zeros are x = 6 and x = -1.25, therefore the correct option is A.