Respuesta :

To find which of these lines are perpendicular, find the slope of each line.

To do it, use 2 points on the line and the following formula:

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

AB:

[tex]m=\frac{5-2}{4-(-5)}=\frac{3}{9}=\frac{1}{3}[/tex]

BC:

[tex]m=\frac{-1-5}{5-4}=-6[/tex]

CD:

[tex]m=\frac{-1-(-4)}{5-(-3)}=\frac{3}{7}[/tex]

DA:

[tex]m=\frac{-4-2}{-3-(-5)}=-\frac{6}{2}=-3[/tex]

For 2 lines to be perpendicular, the product of their slopes must be -1. According to this the only pair that meets this condition is AB, DA.

[tex]m=\frac{1}{3}\cdot-3=-1[/tex]

Segment AB and DA are perpendicular.