Assuming the gas behaves as an ideal gas, we can use the Ideal Gas Law to calculate the pressure:
[tex]\begin{gathered} PV=nRT \\ P=\frac{nRT}{V} \end{gathered}[/tex]We need to use T in absolute terms, so we need to convert it to Kelvin:
[tex]T=(28+273.15)\; K=301.15\; K[/tex]Since we have the volume in L and we want the pressure in atm, we can use the following unit for the R constant:
[tex]R\approx0.082057\; atm\cdot L\cdot K^{-1}\cdot mol^{-1}[/tex]Using the these and the other given values:
[tex]\begin{gathered} V=7.32\; L \\ n=0.448\; mol \end{gathered}[/tex]We have:
[tex]\begin{gathered} P=\frac{nRT}{V} \\ P=\frac{0.448mol\cdot0.082057atm\cdot L\cdot K^{-1}\cdot mol^{-1}\cdot301.15K}{7.32L} \\ P=\frac{0.448\cdot0.082057\cdot301.15}{7.32}\; atm \\ P=1.51239\ldots\; atm \\ P=1.51\; atm \end{gathered}[/tex]So, the pressure is approcimately 1.51 atm.