Respuesta :

1) Considering the formula for the Volume of the Sphere:

[tex]V=\frac{4}{3}\pi r^3[/tex]

We can plug into that formula the Volume, and solve for r. This way we get the radius of this sphere.

[tex]\begin{gathered} 900=\frac{4}{3}\pi r^3 \\ \\ 3\times900=3\times\frac{4}{3}\pi r^3 \\ \\ 2700=4\pi r^3 \\ \\ 4\pi r^3=2700 \\ \\ \frac{4\pi r^3}{4\pi}=\frac{2700}{4\pi} \\ \\ r^3=\frac{2700}{4\pi} \\ \\ r=\sqrt[3]{\frac{2700}{4\pi}} \\ \\ r\approx5.989 \end{gathered}[/tex]

2) On the other hand, we also need the formula to find the Surface Area:

[tex]\begin{gathered} A=4\pi r^2 \\ \\ A=4\pi(5.989)^2 \\ \\ A\approx450\:in² \end{gathered}[/tex]

Rounded to the nearest whole number as requested. So, that is the answer.